Electro-thermal mapping of polymer electrolyte membrane fuel cells with a fractal flow-field
نویسندگان
چکیده
Electro-thermal maps of a polymer electrolyte membrane fuel cell (PEMFC) show the spatial distribution current density and temperature, which is useful to evaluate their performance. Here, electro-thermal mapping carried out for first time on PEMFC with fractal cathode flow-field, design emulates efficient, scalable air transport inside lungs. Such are compared those conventional single-serpentine flow-field PEMFC. Each cell’s performance characterised by analysing surface temperature at different reactant relative humidity (RH) voltage. Relationships shown between segment densities temperatures, operating conditions. The cells deliver better electrochemical exhibit more homogeneous distributions in non-uniform due flooding. temperatures higher than consistent observed performances. In addition, impedance spectroscopy characterisation indicates flooding cells, but not cells.
منابع مشابه
Numerical analysis of reactant transport in the novel tubular polymer electrolyte membrane fuel cells
In present work, numerical analysis of three novel PEM fuel cells with tubular geometry was conducted. Tree different cross section was considered for PEM, namely: circular, square and triangular. Similar boundary and operational conditions is applied for all the geometries. At first, the obtained polarization curve for basic architecture fuel cells was validated with experimental data and then...
متن کاملReaction Engineering of Polymer Electrolyte Membrane Fuel Cells
A new approach to elucidate the operation and control of Polymer Electrolyte Membrane (PEM) fuel cells is being developed. A global reactor engineering approach is applied to PEM fuel cells to identify the essential physics that govern the dynamics in PEM fuel cells. Reaction engineering principles are employed to develop a one-dimensional differential PEM fuel cell suitable for elucidating the...
متن کاملMass Spectrometry of Polymer Electrolyte Membrane Fuel Cells
The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downst...
متن کاملHigh-Peak-Power Polymer Electrolyte Membrane Fuel Cells
A polymer electrolyte membrane fuel cell with amorphous hydrated ruthenium dioxide (RuO2 " xH2O) supercapacitative sublayers inserted between the electrocatalyst layers and the Nafion membrane was fabricated to enhance the cell’s pulse power output. RuO2 " xH2O material showed a high capacitance ~ca. 230 F/g! and allowed a much higher pulse power output, which was demonstrated by cyclic voltamm...
متن کاملDrops, Slugs, and Flooding in Polymer Electrolyte Membrane Fuel Cells
The process of flooding has been examined with a single-channel fuel cell that permits direct observation of liquid water motion and local current density. As product water flows through the largest pores in the hydrophobic GDL, drops detach from the surface, aggregate, and form slugs. Flooding in polymer electrolyte membrane (PEM) fuel cells occurs when liquid water slugs accumulate in the gas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy Conversion and Management
سال: 2021
ISSN: ['0196-8904', '1879-2227']
DOI: https://doi.org/10.1016/j.enconman.2021.114924